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The majority of the load transfer of an adhesively-bonded joint is accomplished by the nonlinear behavior of 
the adhesive. In this paper, the torque transmission capability and shear stress distribution of the tubular 
single lap joint were calculated by incorporating the nonlinear shear properties of the adhesive. The 
nonlinear shear properties were represented by three different mathematical models such as two-parameter 
exponential, linear perfectly-plastic and multilinear strain-softening approximations. 

From the analyses and experiments, it was found that all the analyses with nonlinear approximations 
predicted the torque transmission capabilities accurately, but the two-parameter exponential approximation 
gave the best predictions with the simplest form for use in numerical calculation. 

KEY WORDS adhesively-bonded tubular joint; nonlinear adhesive properties; strain softening; exponen- 
tial approximation; elastic-plastic approximation; torque transmission capability. 

INTRODUCTION 

The design of joints has a special significance in fiber-reinforced composite structures 
because the joints are often the weakest areas in a composite structure and composite 
materials do not possess the forgiving characteristics of ductile metals, namely, their 
capacity to redistribute local high stresses by yielding.' For polymer matrix fiber 
reinforced composites, adhesive bonding and mechanical fasteners such as bolts and 
rivets can be utilized. Adhesive bonding is preferred for high performance continuous 
fiber reinforced polymer composite materials because of the continuous connection, 
whereas in drilling the holes for the bolts or rivets, fibers are cut, the joining is at discrete 
points, and large stress concentration occurs around each hole drilled.2 

There are several types of adhesive joints, such as the single lap, the double lap, the 
stepped lap, and the scarfjoint. Among these, the single lap joint has been studied more 
extensively than any other configuration through analytical, finite difference and finite 
element methods because the single lap joint is most popular, due to its ease of 
manufacture and its relatively low cost. 

Several authors have studied the stresses in a tubular single lap joint subjected to 
torsion assuming elastic adhesive material properties. Alwar and Nagaraja used a finite 
element method to obtain the stresses in the tubular single lap joint subjected to 
t o r ~ i o n . ~  Adams and Peppiatt gave a closed form solution for the shear stresses in 
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38 D. G. LEE el a!. 

tubular single lap joints and partially-tapered tubular scarf joint^.^ Graves and Adams 
used a finite element method to calculate the stresses of a tubular single lap joint whose 
adherends were orthotropic composite material subjected to torsion. They obtained 
the stresses in the adherends by the ply-by-ply analysis. Also, they obtained the stresses 
in the adherends with smeared laminate proper tie^.^ 

Nonlinear adhesive property models have seen limited use in bondline analyses. 
Hart-Smith analyzed several adhesively-bonded joints such as the single lap, the double 
lap, the scarf, and the stepped lap joint. He chose an elastic-plastic model such that the 
total area under the stress-strain curve was equal to that under the true stress-strain 
curve and developed computer software for the analysk6 Grant modeled the adhesive 
stress-strain curve composed of elastic linear and plastic nonlinear curves.' 

As mentioned before, many researchers have analyzed the stresses and the torque 
transmission capabilities of adhesively-bonded tubular lap joints and the related 
references are abundant. However, the previously-published calculation schemes could 
not predict accurately the torque transmission capability of the adhesively-bonded 
tubular lap joint when only the elastic properties of the adhesive were used. When the 
nonlinear adhesive properties were included, complicated mathematics was required 
for the analysis and much computing time was necessary,* even when a commercial 
finite element method was used, because the nonlinear shear properties of the adhesive 
could not be easily input to the material data module of the finite element method. 

In this paper, the torque transmission capability and shear stress distribution of the 
tubular single lap joint were calculated by incorporating the nonlinear shear properties 
of the adhesive. The nonlinear shear properties were represented by three different 
curves such as the exponential approximation with two parameters, i.e., the initial shear 
modulus and ultimate shear strength of the adhesive, the linear-elastic, perfectly-plastic 
approximation, and the multilinear, strain-softening approximation. 

Using the nonlinear shear stress-strain curves, the torque transmission capability as 
well as the stress and strain distributions of the tubular single lap joint were calculated. 
Also, the validity of the analyses was checked experimentally by the measurement of the 
torque transmission capability of the tubular single lap joint. 

ADHESIVE CONSTITUTIVE EQUATION 

The shear stress-strain curves of adhesives are usually nonlinear. Figure l(a) shows the 
shear stress-strain curves of a hot-cured, rubber-toughened epoxy adhesiveg and 
Figure l(b) shows the shear stress-strain curves of the FM-300 film adhesive at different 
temperatures.'O 

The majority of the load transfer of the adhesively-bonded joint is accomplished by 
the nonlinear behavior of the adhesive. The contribution of the linearly elastic behavior 
may be as little as 10% in the case of a ductile adhesive. Therefore, the torque transmis- 
sion capability of the adhesively-bonded joint should be calculated taking into 
account the nonlinear behavior of the adhesive. The difficulty is how to characterize the 
adhesive. 

In this paper, the shear stress, za, versus shear strain, ya,  curve of the adhesive was 
represented by the following three different curves. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
4
3
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



TUBULAR SINGLE LAP JOINT 39 

100 

Uniaxial tension 1 v 
Pure shear :h Pure shear I /  

0 
0 0.1 0.2 0.3 0.4 

Strain 

(a) 

50 

40 

0 

i /  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Strain 
(b) 

FIGURE 1 
23"C), (b) FM-300 film adhesive. 

Shear stress-strain curves of the adhesives (a) Hot-cured, rubber-toughened epoxy adhesive (at 

The first shear stress-strain curve was represented using two parameters such as the 
initial shear modulus, G,, and the ultimate shear strength, T,, as follows. 

1 (1) Tcr = 5m. (1  - , - W r m . r a  

where G, and 7,  are functions of the environmental temperature. The two-parameter 
stress-strain curve can be determined if the two material properties, which can usually 
be obtained from the material suppliers, are known. The equation does not require the 
determination of the elastic limit of the shear strain. Figure 2(a) shows the shear 
stress-strain curve represented by the two-parameter exponential approximation and 
the experimentally-determined stress-strain curve for the IPCO 9923 epoxy adhesive 
whose material properties are shown in Table I. 
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40 D. G. LEE et al. 

TABLE I 
Properties of IPCO 9923 epoxy adhesive 

Tensile modulus (GPa) 
Shear modulus (GPa) 
Tensile strength (MPa) 
Shear strength (MPa) 
Shear strain limit (YO) 
Poisson's ratio 
CTE m/m "C) 
Viscosity 
Cure temperature ("C) 
Cure time (minute) 

1.30 
0.46 

39.5 
29.8 
23.5 
0.41 

72.0 
Paste 
80.0 

270 

Figure 2(b) shows the shear stress-strain curves represented by the two- 
parameter exponential approximation for the FM-300 film adhesive at different 
temperatures. 

From Figure 2, the two-parameter exponential approximation was found to repre- 
sent fairly well the shear stress-strain behavior of the adhesives. 

The second shear stress-strain curve was represented using the linear-elastic, perfect- 
ly-plastic curve as follows. 

7, = G,.Y, ( Y ,  5 Y J  

= 7 m  (Y,> Y J  (2) 

where 7 ,  and y y  are the ultimate shear stress and the yielding shear strain of the 
adhesive. 

Figure 3 shows the shear stress-strain curve represented by the linear-elastic, 
perfectly-plastic approximation. 

The third shear stress-strain curve was represented using the multilinear elastic 
strain-softening curve as follows. 

= Gi* AYi ( Y i  < Y ,  < Y i +  1) 

n 

7,= C Gi.Ayi ( i = O ,  1,2 ,..., n) 
i = O  

(3) 

Figure 4 shows the shear stress-strain curve represented by the multilinear elastic 
strain-softening approximation. In this paper, five elastic strain-softening regions were 
used. 

ANALYSIS OF THE TUBULAR SINGLE LAP JOINT 

In order to derive the governing equation for the shear strain distribution, several 
assumptions were made: the adherends were made of elastic materials, the adhesive and 
the adherends were under only shear stresses. The governing equations derived with 
these assumptions can be applied also to the joint whose adherends are made of 
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FIGURE 2 Shear stress-strain curve represented by the two-parameter exponential approximation and 
the experimentally-determined curve: (a) IPCO 9923 epoxy adhesive (at 25-Q (b) FM-300 film adhesive (at 
20°C; G, = 0.74GPa, at 71 "C; G, = 0.48 GPa and at 91 "C; G, = 0.35 GPa). 

orthotropic composite materials. Figure 5 shows the geometric shape and nomencla- 
tures of the tubular single lap joint for analysis. 

From the torque equilibrium, the sum of the torques T ,  and T ,  in the inner and outer 
adherends of Figure 5 should be equal to the applied torque, T, that is, the following 
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FIGURE 3 Shear stress-strain curve represented by the linear-elastic, perfectly-plastic approximation and 
the experimentally-determined curve for the IPCO 9923 adhesive. 
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FIGURE 4 Shear stress-strain curve represented by the multilinear strain hardening approximation and 
the experimentally-determined curve for the IPCO 9923 adhesive. 
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43 TUBULAR SINGLE LAP JOINT 

Inner Adherend Outer adherend / G I . J I . X I O . ? ' ~ O  / Gz. 5 2 .  Zzi . YZI 

(4 

I 
A - A  

I 
B-B 

(b) 

FIGURE 5 
joint (b) Cross sections of the joint. 

Geometric shape of the adhesively-bonded tubular single lap joint: (a) Shape of the single lap 

equation should hold through the adhesive length 

where tlo is the shear stress of the inner adherend at radius rlo, zzi the shear stress of the 
outer adherend at radius rZp J ,  the sectional polar moment of inertia of the inner 
adherend, and J ,  the sectional polar moment of inertia of the outer adherend. 

Assuming small adhesive thickness, q, and considering an element of the joint length, 
Az, as shown in Figure 5b, geometric compatibility yields the following relationship. 

V ( Y ~  + A Y ~ )  - V ' Y ~  = Yzi. ' 2  - Y 1 o . A ~  ( 5 )  

where, yl, is the shear strain of the inner adherend at rl0, and yzi  is the strain of the outer 
adherend at rZi. 
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44 D. G. LEE et al. 

In the limit that Az becomes infinitesimally small, Eq. ( 5 )  reduces as follows. 

Assuming that the adhesive is an isotropic material and that the thickness of the 
adhesive is small, the variations of the torque in the z-direction are expressed as follows. 

where, a( = rlo + r2J2) is the average radius of the adhesive. 
Using the geometric compatibility and torque equilibrium equations so far derived, 

the governing equation of the adhesive can be calculated according to the three 
adhesive constitutive relationships: 

(1 1 Two Parameter Exponential Approximation 

The geometric compatibility between the shear strain of the adhesive and the shear 
strains of the adherends can be written as follows. 

where, G, and G, are the shear moduli of the inner and outer adherend, respectively. 
Differentiating Eq. (9) with respect to z,  the following equation can be obtained. 

Substituting Eq. ( 1 )  into Eq. (7) and then substituting the resulting equation into Eq. 
(10) results in the governing differential equation of the shear strain of the adhesive as 
follows. 

where 
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TUBULAR SINGLE LAP JOINT 45 

Since TI = T, T2 = 0, when z = 0, the following boundary conditions are obtained 
from Eq. (6) and Eq. (1 1). 

Differentiating Eq. (14), the third order derivative boundary condition is obtained as 
follows. 

Since TI = 0, T, = T when z = L, another boundary condition is obtained as follows. 

Equation (1 1) was solved by a numerical method using the Taylor series expansion 
method’ including maximum third order derivative as follows. 

where y,(z) is the shear strain at distance z and h is the incremental distance along the 
z-axis. 

The maximum torque transmission capability was calculated by assuming that 
either one or the other end of the adhesive reached the failure shear strain y / .  Since the 
magnitude of the first derivative of the shear strain, yb, becomes smaller as the shear 
strain approaches the failure strain, the end which reaches the failure strain first was 
determined by comparing Iyb(O)( and ly~(L)l. Then the other end should satisfy the 
condition of the first derivative of the shear strain. Since the first derivativecontains the 
applied torque, T, this condition gives the maximum torque. In this paper, the first 
adhesive failure occurred at z = 0. In the numerical calculation, the first trial value of T 
was calculated by assuming that all the adhesive area reaches the ultimate shear stress, 
T,, and then the value of torque was decreased successively to satisfy the first derivative 
of the boundary conditions. 

(2) Linear-Elrst ic-Perl~Plr l ic  Approximation 

In Figure 6, it is assumed that the regions I and I11 reach the perfectly-plastic zone 
whose shear stress is constant, T,, and region I1 is in the elastic zone. Two sections 
z = Lyl and z = L - L,, are the boundaries of the elastic and plastic zones. 

The analysis was performed in three different regions. 
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46 D. G. LEE et al. 

FIGURE 6 Linear elastic and perfectly plastic zones in the bonding length. 

(Region Z) 

Since the adhesive shear stress was assumed to be the constant, T,, in region 
Z(0 < z < Lyl) of the adhesive, the variation of torque with respect to z in the region I 
can be expressed as follows: 

The boundary condition of Eq. (21) at z = 0 is as follows. 

When z = 0, T2 = T , ~  = 0 (22) 
Integrating Eq. (21) and using the boundary condition of Eq. (22), the torques TI and T, 
can be calculated as follows: 

The geometric compatibility Eq. (9) becomes the following: 

1 dy, = - (2A.z  - B) 
dz rt 

Where. 
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TUBULAR SINGLE LAP JOINT 41 

The boundary condition of Eq. (25) is: 

When 
=In 

z=Ly1,  Y a = Y y = -  
‘ a  

Integrating Eq. (25) with the boundary conditions of Eq. (28), the shear strain of the 
adhesive can be calculated as follows: 

(Region 11) 

Since region II(L,, < z < L - LY2) of the adhesive was assumed to be an elastic zone, 
the variation of the torque with respect to z was expressed in Eq. (7) and (8) as follows: 

Differentiating Eq. (30) with the geometric compatibility of Eq. (6) yields the 
following equation. 

-- - 2na2 . - Ga . ( Y Z i  - Y lo) 

dz2 v 
d2T2 

Substituting T2 of Eq. (4) into Eq. (31), the following shear stress equation is derived: 

d2.r,, T .  rZi -- a2zZi = - 6- 
dz2 J 2  

where 6,4, a are defined below. 

2 ~ . a ~ * r ~ , * G ~  
6 =  

G l .  J 1 . v  

(32. J 2 . T l O  

= G I .  J ,  -rZi  + G2* J 2 - r 1 0  

a-  - (3.5 
From Eq. 24, the boundary conditions of Eq. (32) are: 
When z = L, 1 ,  

2na2*r,,-rm.L -D 
ri  - ZZi = 

J 2  

When z = L - Ly2,  

(33) 

(34) 

(35) 

T.r2, 2na2.rZi. zIn. 
r z i  = - - Lr2 = E 

J 2  J 2  
(37) 
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48 D. G. LEE et a!. 

Using the boundary conditions of Eqs. (36) and (37) and iritegrating Eq. (32), rZi  is 
obtained as follows: 

z,~ = C,.cosh (az) + C,.sinh(az) + 4 3 T  (38) 
J ,  

where C, and C, are as defined below. 

- sinh(olLyl).(E - q52T)] 

C 2 - F  - ~ [ c o s h ( o L , , ) . ( E - ~ ~ T )  

(39) 

a.(L- L,,,).D - 4 3  T 
J ,  

Also, F is defined as follows. 

F = cosh(aL,,,)*sinh(a.(L- 4,)) 
(41) 

- sinh(al,,)-cosh(a.(L- L,,,)) 
Since T, can be calculated from Eq. (38), the shear stress, z~, of the adhesive can be 

calculated by substituting dT2/dz into Eq. (30): 

Z~ = *[C,a.sinh(ccz) + C,a.cosh(az)] 
2na -Izi 

(Region I l l )  

respect to z is: 
In region 111 (L- L,,, c z c L) of the adhesive, the variation of the torque with 

The boundary conditions of Eq. (43) are: 
When z = L, 

T-r,i 
Z l i  = - 

J 2  

And, when z = L- L,,, 

Tm y =- 
Ga 

(45) 
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TUBULAR SINGLE LAP JOINT 49 

Using the boundary conditions of Eqs. (44) and (45), the strain, y,, of the adhesive in 
region I11 can be calculated by the same method as in region I: 

where B is defined is as: 

Since the adhesive shear stress, T,,, in Eq. (42) is z, at both z = L,, and z = L - Ly2, 
two relationships between L y l ,  L,, and T can be obtained. If the value of L,, (or Ly2) is 
given, the value of L,, (or L,,) and T can be numerically calculated from the two 
relationships. Then, using Eq. (29) and Eq. (46), the shear strains at z = 0 and z = L can 
be calculated. If the shear strain at either end of the joint does not reach the failure shear 
strain of the adhesive, the value of L,,  (or Ly2) is increased and the previous steps are 
repeated until the shear strain at either end of the joint reaches the failure shear strain of 
the adhesive. The value of T becomes the torque transmission capability of the 
adhesively-bonded joint when the shear strain at either end reaches the failure shear 
strain of the adhesive. Also, the distribution of the shear stress, z,, in region I1 is 
obtained by Eq. (42) and the distributions of the shear strains in regions I and I11 are 
obtained by Eq. (29) and (46), respectively. Since the maximum shear strain of the 
adhesive occurs at either one or other end of the adhesive, the two shear strains at the 
ends of the adhesive were calculated and compared. 

(3) Multilinear Strain-Softening Approximation 

It is very hard to get the closed form solution of the adhesive joint with the linear strain 
softening approximation as shown in Figure 4. Therefore, the finite element method 
was used in the analysis of the adhesively-bonded tubular single lap joint with the linear 
strain-softening adhesive properties. The finite element programm used was ANSYS 
5.012 in which and 8-Node 3-D isoparametric element was used for the analysis. Since 
the tubular joint has geometric symmetry, a quarter of the whole structure was 
analyzed. Figure 7 represents the element of the cross-section of the tubular single lap 
joint. 

Also, the closed form solution for the torque transmission capabilities of the 
adhesively-bonded tubular single lap joint with linear elastic shear properties of the 
adhesive, which was derived by Adams? is included in the Appendix of this paper. 

NUMERICAL COMPUTATIONS AND EXPERIMENTS 

In order to verify the validity of the method developed in this work, the tubular single 
lap joints were tested under static torque. Figure 8 and Table I1 show the dimensions 
and data for the adhesively-bonded single lap joint used in computations and experi- 
ments. 
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50 D. G. LEE et al. 

I Inner adherend \ Center l ine 

FIGURE 7 Finite element mesh model of the tubular single lap joint. 

.0 0 

Adhesive ,, r” Teflon rod 

V block base 

FIGURE 8 
adherend (c) Assembled tubular single lap joint. 

Dimensions(mm) of the adherends of the tubular single lap joint: (a) Inner adherend (b) Outer 

Figure 9 shows the shear stress and strain distributions in the adhesive of the single 
lap joint when the bonding length is 10 mm and the applied torque is 120 Nam. From 
Figure 9, it was found that the shear stresses calculated by the three constitutive 
relations were not much different, while the shear strains were much different because 
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TUBULAR SINGLE LAP JOINT 51 

TABLE I1 
Data of the adhesively-bonded tubular single lap joint 

Adhesive Inner adherend Outer adherend 
(IPCO 9923) (Steel solid rod) (Steel hollow tube) 

Shear modulus (GPa) 0.46 80.0 80.0 
Sectional polar moment of inertia (w9 m4) - 7.82 10.89 
Thickness (mm) 0.1 - 2.0 
Inner radius (mm) 8.4 8.5 
Outer radius (mm) 8.5 8.4 10.5 

Bonding length (mm) 10 

- 

31 

29 

27 

25 

23 

0 

0.30 

0.25 

c '3 0.20 
L 4 
v) 

h 
0.15 

2 0.10 
rn 

0.05 

1 Two parameter exponential 
- Linear elastic perfectly plastic 

I _ _ _ _ _  Multilinear strain hardening I 

1 1 i ~ , I , J I I I I I J I J 1 1 , ~  

0 1 2  3 4 5 6 7 8 9 10 
Bonding range (mm) 

(4 

- h e a r  elastic perfectly plastic 

0 123 

-2 ----________________-------- ---___ -- -_ --__ .- 
- - - - _ _ _ _ - -  

Bonding range (mm) 
(b) 

FIGURE 9 Shear stress and strain distributions in the adhesive when the bonding length is 10 mm and the 
applied torque is 120 N.m.: (a) Shear stress distributions (b) Shear strain distributions. 
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52 D. G. LEE et al. 

the majority of the adhesive was under a shear stress close to the ultimate shear strength 
due to the shear-strain-softening effect. If the ultimate shear strain of the adhesive was 
small or if the shear-softening effect was small, the approximation model that was fitted 
well to the physical behavior would accurately predict the shear stress distribution. The 
shear strains at the two ends of the joint are different because the joint is not symmetric 
to the plane which is perpendicular to the z-axis, which is evident from the elastic 
closed-form solution in the Appendix of the paper. 

Figure 10 and 11 show the shear stress and strain distributions, respectively, in the 
adhesive, when the joint whose bonding length is 10 mm, reaches the value of the failure 
shear strain, 0.235. 

In order to check the validity of the analyses, several adhesively-bonded tubular 
single lap joints were manufactured and tested. Since the torque transmission capabil- 
ity of the adhesively-bonded tubular single lap joint depends on the surface roughness 
of the adherends and the thickness of adhesive, in this paper an arithmetric surface 
roughness of 2 pm of the adherends and a thickness of adhesive of 0.1 mm were chosen, 
because these values were suggested to be the optimum for the fatigue strength of the 
same te~tpiece. '~ Both the inner and outer adherends have accurate mounting surfaces 
which were ground, and the concentricity between the outer and inner adherends was 
secured by mounting the ground surfaces in an accurate V-block when curing the 
adhesive. Ten joint specimens were manufactured and tested under static torque with 
the multiaxial material testing system MTS 3 19.10.14 

Table I11 shows the maximum torque transmission capabilities which were experi- 
mentally measured and calculated using the three different nonlinear approximations. 
From Table IV, it was found that all three nonlinear approximations accurately 
predicted the torque transmission capabilities with an error of less than 5%. The 
two-parameter exponential approximation method slightly underestimated while the 
other two methods overestimated the experimentally-determined torque transmission 
capability. Since the two-parameter capability exponential approximation method not 
only gives better prediction but also has the simpler form to be used in the numerical 
calculation, it is recommended for the analysis and design of adhesively-bonded 
tubular single lap joints. 

CONCLUSIONS 

In this work, the shear strain and shear stress distributions and torque transmission 
capabilities of the tubular single lap joint were calculated by incorporating nonlinear 
adhesive shear stress-strain properties. The nonlinear shear properties of the adhesive 
were represented by three different approximation methods: two-parameter exponen- 
tial, linear-elastic perfectly-plastic and multilinear strain-softening approximations. In 
order to check the validity of the analyses, the torque transmission capabilities of the 
tubular single lap joints were experimentally tested. 

From the tests, it was found that all of the nonlinear approximations accurately 
predicted the torque transmission capabilities of the tubular single lap joint. The 
two-parameter exponential approximation best predicted the torque transmission 
capabilities and it has the simplest form for use in the numerical calculation. 
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FIGURE 10 Shear stressdistributionsin the adhesive when theadhesive maximumshear strain reaches the 
adhesive failure strain, 0.235 (adhesive bonding length 1Omm): (a) Two-parameter exponential approxi- 
mation, (b) Linear-elastic, perfectly-plastic approximation, (c) Multilinear strain hardening approximation. 
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FIGURE 11 Shear strain distributions in the adhesive when the adhesive maximum shear strain reaches 
the adhesive failure strain, 0.235 (adhesive bonding length 10 mm): (a) Two-parameter exponential approxi- 
mation, (b) Linear-elastic, perfectly-plastic approximation, (c) Multilinear strain hardening approximation. 
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TABLE I11 
Maximum torque transmission capabilities of the tubular single lap joints 

Maximum torque (N.m) Error 
Experiment Average 128.1 

Standard deviation 2.6 

Two-parameter exponential approximation 
Linear elastic perfectly plastic approximation 
Multilinear strain softening approximation 

127.6 
133.4 
131.8 

- 0.4(%) 
+ 4.1(%) 
+ 2.9(%) 
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APPENDIX 

Assuming that the adhesive is a linear material, stress and strain distributions of the 
tubular single lap joint of Figure 5 were calculated as f01lows:~ 

Differentiating Eq. (8) w.r.t. z, and using the relationships T2 = Z ~ ~ J , / ~ , ~ ,  y Z i  = Z ~ ~ / G ,  
and ylo = rlJG1, the following equation involving z2 i  is obtained 

Substituting zlo from Eq. (4) into Eq. (48) and noting that at z = L, T = (r2iL J 2 / r Z i ) ,  
Eq. (48) becomes the following equation 
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Equation (49) is a second-order ordinary differential equation which can be rewritten 
in the following form 

where, 6 ,# ,  o! were already defined by Eqs. (33), (34) and (35). The boundary conditions 
for Eq. (50) are: 

a tz=O, T ~ ~ = O  (5  1) 

Tr2i 

J 2  
at z = L, z2i = tZ iL = ~ 

The solution for the adherend stress, zz i ,  is: 

1 - #(l - cosh(aL)) )smh . (az)] (53) sinh (IX L) T~~ = 3 [ 4( 1 - cosh(a z)) + 
J 2  

From Eq. (8), the adhesive shear stress is given by 

cosh (o!z) - cp.sinh(txz) 1 - q(l - cosh(txL)) 
sinh(tx L )  
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